Estimates concerned with Hankel determinant for M(α) class

نویسندگان

چکیده

In this paper, we give an upper bound of Hankel determinant (H2(1)) for the classes M(?), ? C. Also, obtain a sharp estimate classical Fekete-Szeg? inequality. That is, will get H2(1) = c3 c22. Moreover, in class analytic functions on unit disc, assuming existence angular limit boundary point, estimations below modulus derivative have been obtained.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

determinant of the hankel matrix with binomial entries

abstract in this thesis at first we comput the determinant of hankel matrix with enteries a_k (x)=?_(m=0)^k??((2k+2-m)¦(k-m)) x^m ? by using a new operator, ? and by writing and solving differential equation of order two at points x=2 and x=-2 . also we show that this determinant under k-binomial transformation is invariant.

15 صفحه اول

Hankel Determinant Solution for Elliptic Sequence

We show that the Hankel determinants of a generalized Catalan sequence satisfy the equations of the elliptic sequence. As a consequence, the coordinates of the multiples of an arbitrary point on the elliptic curve are expressed by the Hankel determinants. PACS numbers: 02.30.Ik, 02.30.Gp, 02.30.Lt

متن کامل

A Catalan-Hankel Determinant Evaluation

Let Ck = ( 2k k ) /(k+1) denote the k-th Catalan number and put ak(x) = Ck+Ck−1x+· · ·+C0x . Define the (n+1)×(n+1) Hankel determinant by setting Hn(x) = det[ai+j(x)]0≤i,j≤n. Even though Hn(x) does not admit a product form evaluation for arbitrary x, the recently introduced technique of γ-operators is applicable. We illustrate this technique by evaluating this Hankel determinant as Hn(x) = n ∑

متن کامل

Second Hankel Determinant for a Class of Analytic Functions Defined by Fractional Derivative

Also let S, S∗ β , CV β , and K denote, respectively, the subclasses of A0 consisting of functions which are univalent, starlike of order β, convex of order β cf. 1 , and close-to-convex cf. 2 in U. In particular, S∗ 0 S∗ and CV 0 CV are the familiar classes of starlike and convex functions in U cf. 2 . Given f and g inA, the function f is said to be subordinate to g in U if there exits a funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Filomat

سال: 2022

ISSN: ['2406-0933', '0354-5180']

DOI: https://doi.org/10.2298/fil2211679a